学神王冠_分卷阅读400 首页

字体:      护眼 关灯

上一页 目录 下一章

   分卷阅读400 (第4/4页)

W=V (fpgq:1≤p≤k, 1≤q≤l) .一方面, 如果 (a1, a2, …, an) ∈V, 那么所有的fp在这一点为0, 也就蕴含着所有的fpgq在 (a1, a2, …, an) 点也等于0.因此V糣 (fpgq) .类似地, 有W糣 (fpgq) .这就证明了V∪W糣 (fpgq) .

    另一方面, 取 (a1, a2, …, an) ∈V (fpgq) , 如果该点在V中, 那么就完成了证明.如果该点不在V中, 那么对某个p0, 有fp0 (a1, a2, …, an) ≠0.又因为fp0gq对所有的q, 在 (a1, a2, …, an) 点都等于0, 那么gq一定在这个点为0, 这就证明了 (a1, a2, …, an) ∈W.于是得到V (fpgq) 糣∪W.

    综上有V∪W=V (fpgq) .因此V∪W也是仿射簇……

    ai1x1 ai2x2 … ainxn=0, i=1, 2, …, s.

    对于每个i, ai1x1 ai2x2 … ainxn=0表示一个超平面.

    令fi=ai1x1 ai2x2 … ainxn, 则fi=0 (即该超平面的定义方程) 在几何上表示由多项式fi定义的仿射簇Vi.由于对于每个子空间, 存在一个包含它的超平面, 从而对于每个子空间Wi, 存在一个包含它的仿射簇Vi, 其中i取值均为1, 2, …,……】

    安宴一边讲解论文,一边看着大家的表情,发现

加入书签 我的书架

上一页 目录 下一章